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1 INTRODUCTION
The goal of this project is to design an artificial intelligent agent
that can achieve human like performance in playing the game of
"Drop7". Drop7 is a simple puzzle game with easy to comprehend
rules (see section [1.1] below), however it has a high level of so-
phistication with an enormous number of possible states (∼ 1049).
On top of that, the game have a significant amount of randomness
incorporated in it. The stochastic nature of the game with its vast
state-space, rules out the possibility of a closed form solution ap-
proach.
In general, there are three types of machine learning; supervised
learning, unsupervised learning and reinforcement learning [11].
The later, uses an iterative approach to gather feedback from its
environment, finding the most effective route of action. Given the
large state space we decided reinforcement learning is the most
suitable technique to face this project’s challenges.

1.1 Game Rules
The game is played on a 7x7 square grid (Figure 1). In each turn
the player is assigned a disc with a random number from 1 to 7
(’number disc’ / ’element’) and is given an option to drop the disc
on any of the possible columns (7 possible actions). Whenever the
number of a disc matches the number of the contiguous discs in its
row or column, that disc explodes, effecting any blank discs in its
immediate proximity (up, down, left, right). When a disc explodes
near a blank disc once, it gets cracked, and when a disc explodes
near blank-cracked disc, it turns into a random numbered disc.
Thus, a blank disc is converted into a number disc only after a disc
explodes near it twice. After every 5 turns, the round ends and a full
row of blank discs emerges from the bottom of the grid, pushing
all other discs up. Each turn the player gains 1 score point. The
objective is to eliminate discs for as long as possible, accumulating
score points, until the grid overflows and the game ends.

2 LITERATURE REVIEW
In our literature review we have not found works that tried to
solve Drop7, thus we took interest in related works of reinforce-
ment learning algorithms that play different games. Most of the
literature reviewed was focused on deep reinforcement learning
[2] [8] [12] [10], which given the time constrains of this project was
not a feasible avenue to pursue. Given the size of possible states
in the problem, and given the fact we are using linear function ap-
proximation we continue with the understanding that our success
will be limited. Instead, we studied the subject of function approxi-
mation in Q learning. We took notice of Samuel, Arthur L work [9]
on what features to take and the possibilities and limitations of
choosing the correct features. However we did differ by the method

Figure 1: Drop7 Simulator

of updating our weights. In Samuel’s work he ignored the value of
the terminal states that he reached, we on the other hand used the
observed rewards that we got (the score of the game).

3 DATASET
Typically when using reinforcement learning methods, the algo-
rithm does not train on a dataset per se, but rather an agent explores
the environment creating a dataset on the go. In our problemwe use
a similar approach. In the training stage, the dataset is comprised
from the Q-Learning algorithm playing the game many iterations,
recording the score and actions and updating the features’ weights
accordingly. In order to easily extract interesting information of a
certain state, a game class was built to hold more information then
the raw 7𝑥7 matrix. Analysis of the board’s various data structures
were created such as the amount of detonations that occurred, the
top free location of each column, and the groups of elements in
each row. This extra space and analysis is done during each round
and helps to create more meaningful feature extractions in addition
of simplifying code execution and reducing the chance for software
bugs.
Once the training stage is done, the test stage begins, relying on
the weights that were found during the training stage.

4 BASELINE
The baseline was obtained by a random policy. Namely, a random
agent played the game 5,000 times, in each turn following a ran-
dom policy and choosing one of the 7 available actions uniformly
𝑐 ∼ 𝑈 (1, 7). At the end of each game, the final score was logged (Fig-
ure 2). Both the average and the standard deviation were calculated
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to determine the overall baseline:

Baseline = {Avg : 31.2, Std : 5.12}

First, it is worth noting that achieving a score of ∼ 31 is not always
guaranteed (although likely) even for a human player. Second, note
that the random agent’s best score was almost as high as the human
player’s average (oracle) (Figure 2 and Figure 4). Both of these points
emphasize even more the complexity of the game induced by its
stochastic nature, and that the luck of the draw, both in the number
elements that are introduced from the blank discs and the element
the player is given to drop, is an important aspect of one’s ability
to get a high score. A baseline of pure random might seem a bit too
relaxed in first glimpse, but in fact is far from trivial.

Figure 2: Random approach - histogram of high scores

5 MAIN APPROACH
The main approach that was taken, as mentioned previously, is
reinforcement learning. To achieve high performance in the game,
one must develop a winning strategy. For an artificial intelligent
agent, that means to learn the best policy it can find. To formalize
this problem the environment in which the agent acts must be well
defined - a model of Drop7 is needed. A Markov Decision Process
(MDP) is the natural choice for such a model:
• State: 𝑠 = (M, 𝑛), where M is a 7𝑥7 matrix, representing
the current board and each cell value. 𝑛 is the current disc
number (’element’, 1-7) the player is required to drop next.
• 𝑠𝑠𝑡𝑎𝑟𝑡 = (0̄, n), n ∈ [1, 2...7], 0̄ ∈ R7x7. Note that there are
7 possible start states, all with probability of p(𝑛 = 𝑖) = 1

7 .
• Actions(s): {𝑎 = col | col ∈ [1, 2, 3, 4, 5, 6, 7]}. The player
can drop the current element at any of the 7 columns of the
grid.
• T(s,a,s’): probability of 𝑠 ′ if action 𝑎 is taken in state 𝑠 . This
probability is quite cumbersome to calculate, duo to the
enormous number of possible successors. Even 𝑠𝑠𝑡𝑎𝑟𝑡 with
action 𝑎 = 𝑖 has 7 successors, depending on the next element
that arrives. Hence, after only one turn there are already

|𝑠𝑠𝑡𝑎𝑟𝑡 | · |possible actions| · |possible next element| = 73 pos-
sible successors states.
• Reward(𝑠, 𝑎, 𝑠 ′) = 1[𝑠 ′ ≠ 𝑠𝑒𝑛𝑑 ]. Each move will grant the
player 1 score point, as long as the game did not end.
• IsEnd(𝑠): if M is overflowed in at least one column.
• Discount factor: 𝛾 = 1.

Although well defined, the model above suffers from a number of
difficulties. It has an extensive amount of valid states (∼ 1049 which
is approximately the number of atoms on Earth!). Furthermore,
calculating the transition probabilities T(s,a,s’) for each (𝑠, 𝑎, 𝑠 ′) is
theoretically possible but in practice not feasible. Nevertheless, now
the agent can start the tedious process of policy optimization. First,
to get to know the environment, the agent must be able to explore.
Furthermore, the agent needs to take advantage of the already
purchased knowledge to improve its performance. Hence an epsilon-
greedy approach was selected, balancing between exploration and
exploitation [11]:

𝜋𝑎𝑐𝑡 (𝑠) =
{
argmax𝑎∈Actions �̂�𝑜𝑝𝑡 (𝑠, 𝑎), 𝑤 .𝑝 1 − 𝜖
random from Actions(𝑠), 𝑤 .𝑝 𝜖

Where 𝜖 is an hyper parameter (see section 5.1).
Secondly, an approximation of �̂�𝑜𝑝𝑡 (𝑠, 𝑎) is in order. To accomplish
that, Q-learning algorithm was applied [14][11][1]:

�̂�𝑜𝑝𝑡 (𝑠, 𝑎) ← (1−𝜂)�̂�𝑜𝑝𝑡 (𝑠, 𝑎) +𝜂 [𝑟 +𝛾 max
𝑎′∈Actions(𝑠′)

�̂�𝑜𝑝𝑡 (𝑠 ′, 𝑎′)]

Where 𝛾 = 1, and 𝜂 is an hyper parameter (see section 5.1).
However, due to the number of possible states, the algorithm is

not capable of covering every option. In practice, the agent’s prob-
ability to encounter the exact same state in two different games is
slim [3].
In order to address this issue, function approximation was intro-
duced to the Q-learning algorithm [14], based on feature vector
𝜙 (𝑠, 𝑎) and weight vector w:

�̂�𝑜𝑝𝑡 (𝑠, 𝑎;w) = w · 𝜙 (𝑠, 𝑎)

Where w is learned in an iterative manner:

w← w−𝜂 [�̂�𝑜𝑝𝑡 (𝑠, 𝑎;w) − (𝑟 +𝛾 max
𝑎′∈Actions(𝑠′)

�̂�𝑜𝑝𝑡 (𝑠 ′, 𝑎′)]𝜙 (𝑠, 𝑎)

w(0) = 0̄

This practice, with well defined feature vectors 𝜙 (𝑠, 𝑎), will reduce
the state space substantially. The features should maintain a delicate
balance between dimension reduction and holding as much relevant
information as possible. Many features were evaluated in an attempt
to refine and enhance the agent’s performance [4]. Finally, the
following features were introduced:
• ’min_eq_elem’: 1[min_col == a], equals to 1 when the ele-
ment is dropped on one of the lowest columns. Range [0 : 1].
• ’max_eq_elem’: 1[𝑚𝑎𝑥_𝑐𝑜𝑙 == 𝑎]·1[|𝑚𝑎𝑥_𝑐𝑜𝑙 | ≤ 2], equals
to 1 when the element is dropped on one of the highest
columns, in case there are no more than 2 columns with the
same maximum value of elements. Range [0 : 1].
• ’row_dets’:

∑7
𝑖=1 1[M(𝑟𝑜𝑤 (𝑒𝑙𝑒𝑚), 𝑖) detonated], equals to

the sum of discs in the current element’s row that were
detonated. Range [0 : 6].
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• ’col_dets’:
∑7

𝑗=1 1[M( 𝑗, 𝑐𝑜𝑙 (𝑒𝑙𝑒𝑚)) detonated], equals to the
sum of discs in the current element’s column that were deto-
nated. Range [0 : 6].
• ’elem_det’: 1[current element detonated]+det_near_disc()
(see below), equals to 1 if the current element detonated, and
gets a bonus if its next to black discs. Range [0 : 7].
• ’1_det’: 1[current element == 1 detonated]+det_near_disc()
(see below), equals to 1 if the current element is a disc num-
ber ’1’, and its detonated. Gets a bonus if its next to black
discs. Range [0 : 7].
– helper function: ’det_near_disc()’:∑

𝑖=𝑑,𝑙,𝑟 1[detonated] ·(1[i == blank]+2·1[i == cracked]),
that is, if the current element detonated, any of its neigh-
bors (down, left, right) that are blank discs will increase
the feature value by 1, and each neighbor that is a cracked
disc will increases the value by 2. Range [0 : 6].

Even though the function approximation solves many issues, like
the model’s dimension, it introduces new limitations. The function
approximation is linear, that is, the different features do not interact.
This holds an hidden assumption that the features are independent,
which they are not, and their weighted superposition can dictate
the best course of action. This is a very strong assumption, that
holds only in case the features where chosen in such a way that the
state-space under this transformation is linearly separable. Because
this is almost certain not to be the case, most of the selected features
do not reflect the status of the game as is, but rather the different
aspects of the outcome following a certain action. This allows the
agent to understand what are the effect of its actions, learning
which states are more favorable.
However, now the model faced a new problem - overfitting. As
many weights-based models do, this liner function approximation
model suffers from overfitting when the training stage is too long.
To handle this issue the Ridge 𝜆∥w∥22 regularization was added,
modifying the weights update as such:

w← w−𝜂
{
[�̂�𝑜𝑝𝑡 (𝑠, 𝑎;w) − (𝑟 +𝛾 max

𝑎′
�̂�𝑜𝑝𝑡 (𝑠 ′, 𝑎′)]𝜙 (𝑠, 𝑎) +𝜆 ·w

}
Preventing themodel from overfitting, where 𝜆 is a hyper-parameter
(see section 5.1)
Be that as it may, equipped with the modified algorithm and the
above features, the agent can try and tackle the unfamiliar en-
vironment, its target; achieving the highest score. Although the
feature sate space is smaller in orders of magnitude from the origi-
nal problem, it still takes a while to train on. Thus, the agent played
𝑛 = 50, 000 games (Figure 3). Next, as a evaluation stage, 10,000
games were played, this time with 𝜖 = 0 (Figure 4), that is - no
exploration, only exploitation. The average score combined with
its standard deviation were used to assess its success level.

5.1 Hyper Parameters Tuning
As in any machine learning model, there are hyper-parameters that
need to be tuned in this model as well. Each has its own effect
on the training process of the agent, and therefore on the final
result. Tuning those parameters can be cumbersome work, done
by combination of past work, intuition and many iterations of trial
and error. Here are some of the hyper-parameters of this model:

• 𝜖 , the probability of exploration in the greedy-epsilon al-
gorithm: Although the agent was able to achieve fair per-
formances with a constant 𝜖 (0.2), finally a more robust ap-
proach was taken to fully utilize the exploration-exploitation
tradeoff. Accordingly, 𝜖 was set to:

𝜖 =
1
4√
𝑖
, 𝑖 = iteration number

The value updates on each iteration, decreases very slowly,
reaching a value of 0.1 after 10,000 iteration. This allows
the agent an extended period to explore while still in the
training stage.
• 𝜂, the gradient step size of the weights: Initially this param-
eter was set to 1√

𝑖
, however from an algorithmic stability

point-of-view, it is recommended that 𝜂 will satisfy the fol-
lowing [6]:

∞∑
𝑖=0

𝜂𝑖 = ∞ &
∞∑
𝑖=0

𝜂2
𝑖 ≤ ∞

Hence, 𝜂 was chosen to be:

𝜂 =
1
𝑖
, 𝑖 = iteration number

• 𝜆, regularization factor: Many different values were tested
in order to reach convergence on one hand, and yet have
a long enough learning period on the other. The value that
provided the best outcome is:

𝜆 = 0.1

6 EVALUATION METRIC
Generally, the evaluation metric is based on the game’s score. The
score of the game is equivalent to the number of turns played
before the grid overflows. Accordingly, the performance of a player
(human or an artificial agent) is measured by:

(1) Avg: average score of all the played games.
(2) Std: standard deviation of all played games score.

The two metrics grant a clear overview of how good, as well as
how consistent a player is. For an agent that has both training and
test stages, like the reinforcement learning agent, the evaluation
metric is defined as the measured {Avg, Std} on the test stage, that
is 𝜖 = 0.
In the training stage for the reinforcement learning agent, additional
more "amorphic" metrics were used to fine tune the model’s hyper-
parameters, particularly which features to incorporate into 𝜙 (𝑠, 𝑎).
For instance, the slop of the score graph as a function of games
played (Figure 3). A Steeper slop indicates a higher gradient, that
might indicate not only a faster learning rate but maybe also a
higher asymptotic value. Another example is the feature’s weight
updates. Final weights that remained very small might indicate that
the correlating feature is not contributing much, and the agent de
facto ignores them. For weights that did not converge and jitter
strongly even after a substantial number of updates, the correlating
features were discarded, assuming they were only increasing the
variance while not benefiting the average final score.
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Figure 3: Q-learning progress as a function of the current
iteration. The green line is a logarithmic fit, and each blue
dot is a score that the RL algorithm has reached.

7 RESULTS ANALYSIS
The reinforcement learning agent trained by playing Drop7 50,000
iterations (Figure 3), and than was put to a test; playing 10,000
games on policy, that is with 𝜖 = 0. Each turn taking the best move
its newly learned policy dictate. The final results that were logged
are the following (Figure 4):

RL Agent = {Avg : 49.61, Std : 11.18}

Figure 4 is comparing the reinforcement learning agent perfor-
mance with the random agent (baseline) which achieved {Avg :
31.2, Std : 5.12} on 5,000 games, and the humans accumulating
score is (oracle): {Avg : 73.2, Std : 21.4} on 30 games.
As one can see, the reinforcement learning agent surpasses the
random agent, but falls short comparing to a human player. For
better intuition, transforming the result to a scale of 1 to 10, where
the baseline is ranked as 1, and the oracle as 10, the agent will get
a rank of ∼ 5.5.
Note that non-negligible number of games, the agent was able to
attain a better than human average score. The ’Std’ metric of the
reinforcement learning agent is fairly high, but may be misleading.
The the final score distribution is not a symmetric Gaussian, but
rather has a heavier tail to the positive side of the X axis, indicating
that the agent can preform much better (doubling its score) on
certain games (Figure 4).
Notwithstanding the fact that the agents score is way lower than
the oracle, based on the simple model of a one layer Q-learning al-
gorithm with a function approximation, these results surpassed our
expectations. One cannot determine if the current model exhausted
its capabilities, but there is evidence that the model is probably not
too far from its edge, performance-wise. Most of the sophistication
of the model is rooted in its features, that were ’filtered’ by the
model designed statistic point of views. Enhancing this model, by
tweaking and modifying it, might result in even better performance,
but from a reinforcement learning stand point is quite senseless.

Hence, to realize the upper target threshold (human-like skills), a
new model is in order.

Figure 4: A comparison between human performance
(Green), RL performance (Orange) and randomperformance
(Blue).

8 ERROR ANALYSIS
As the number of features grew, and due to the enormous sate space
of the problem, many experiments comparing different training
stages lengths were done, trying to evaluate the marginal additional
benefit from a longer training sequence. The underlining assump-
tion; longer training - more optimal policy. To our surprise, this
was not the case.
With the improved model, tuned hyper parameters and carefully
chosen features, the agent got promising results with a small size
of iterations, but got worst and worst with more and more games.
Moreover, the features’ weight values skyrocketed. Digging into
the problem, the conclusion was that the root cause is a mixture of
two effects:
• No guarantee of convergence: this model uses bootstrapping,
function approximation, and is an off-policy model. The
combination off these three attributes into one model, can
cause the model to be unstable and to diverge.
• Overfitting: themodel is linear in the feature’s weights, while
the features (a) decrease the state-space significantly, and (b)
some features are strongly correlated. The combination of
these qualities will make the model prone to overfit.

To overcome the new issue, ridge regularization was introduced to
the model. A new component was added to the weights updated:

𝜕( 12𝜆∥w∥
2
2)

𝜕w
= 𝜆w

Themodifiedmodel has regain its stability, and the feature’s weights
converged to finite reasonable values. Figure 5 compares the exact
same model at the test stage (10,000 games) posterior training it on
50,000 games, once with and once without the ridge regularization.
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Without regularization the model’s average score is lower than the
baseline, preforming worst them random. With the regularization,
the agent is able to archive worthy results, following a rational
policy.

Figure 5: A comparison between twoRLmodels, without reg-
ularization (Blue) and with 𝐿2 regularization (Orange).

9 FUTUREWORK
Although the agent’s best scores are as good as the human’s best
scores, the variance is very high and the performance is not consis-
tent. As discussed above, the current model is somewhat limited.
Consequently, a better model is required [7]. One possible model
is a deep fully-connected network that is essentially a cascade of
Q-learning with evaluation function layers. Using a back propa-
gation algorithm, all the weights and biases can be updated. This
model will allow much more complex interaction between different
features, hopefully enabling the agent to better preform [5][13].
Nevertheless, a larger model with more variables to tune will de-
mand much more training, hyper-parameter fitting, and probably
less stability. One limiting factor might be runtime, another might
be hardware.
Having said that, we do believe that there is more to learn here,
both for the agent and for ourselves, so we are planning to continue
to more advance algorithms in the near future.

10 CODE
The code is uploaded to https://github.com/ekreate/cs221-final-
project.
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